[image: Solace Developers]	
	Community
	Events

API Tutorials	Docs
	Downloads
	Codelabs

	Login

PubSub+ for Developers
Create event-driven apps and microservices on any platform with whatever language, open protocols, and APIs you choose.
Get Started with DockerGet Started with Cloud

NOT FOUND
You just hit a route that doesn't exist... the sadness.

	Java
	Python
	Go
	Spring
	JS
	REST
	MQTT
	JMS 2.0
	JMS 1.1

Copy CodeMessagingService messagingService = MessagingService.builder(ConfigurationProfile.V1)
 .fromProperties(properties).build().connect();
 DirectMessagePublisher publisher = messagingService.createDirectMessagePublisherBuilder()
 .onBackPressureWait(1).build().start();
 OutboundMessage message = messagingService.messageBuilder().build("Hello World!");
 Topic topic = Topic.of("solace/try/this/topic");
 publisher.publish(message, topic);

Copy Codetopic = Topic.of("solace/try/this/topic")
 messaging_service = MessagingService.builder().from_properties(broker_props).build().connect()
 direct_publisher = messaging_service.create_direct_message_publisher_builder().build().start()
 outbound_msg = messaging_service.message_builder().build("Hello world!")
 direct_publisher.publish(destination=topic, message=outbound_msg)

Copy Codetopic := resource.TopicOf("solace/try/this/topic")
 messagingService, err := messaging.NewMessagingServiceBuilder().FromConfigurationProvider(brokerConfig).Build()
 directPublisher, builderErr := messagingService.CreateDirectMessagePublisherBuilder().Build()
 outbound_msg, err := messagingService.MessageBuilder().BuildWithStringPayload("Hello world")
 publishErr := directPublisher.Publish(outbound_msg, topic)

Copy Code// Publish using Spring Cloud Stream
 @Bean
 public Supplier helloWorldSend(){
 return () -> {
 return "Hello World";
 };
 }

Copy Codevar message = solace.SolclientFactory.createMessage();
 message.setDestination(solace.SolclientFactory.createTopicDestination("solace/try/this/topic"));
 message.setBinaryAttachment("Sample Message");
 message.setDeliveryMode(solace.MessageDeliveryModeType.DIRECT);
 publisher.session.send(message);

Copy Codecurl -X POST http://[HOST]:[PORT]/solace/try/this/topic \
 -d "Hello World REST" \
 -H "Content-Type: text/plain"
 --user [client-username]:[password]

Copy CodeString content = "Hello world from MQTT!"
 MqttMessage message = new MqttMessage(content.getBytes())
 message.setQos(0)
 String topic = "solace/try/this/topic"
 mqttClient.publish(topic, message)

Copy CodeJMSContext context = connectionFactory.createContext();
 Topic topic = context.createTopic("solace/try/this/topic");
 TextMessage message = context.createTextMessage("Hello world!");
 JMSProducer producer = context.createProducer().setDeliveryMode(DeliveryMode.NON_PERSISTENT);
 producer.send(topic, message);

Copy CodeTopic topic = session.createTopic("solace/try/this/topic");
 MessageProducer messageProducer = session.createProducer(topic);
 TextMessage message = session.createTextMessage("Hello world!");
 messageProducer.send(topic, message, DeliveryMode.NON_PERSISTENT,
 Message.DEFAULT_PRIORITY, Message.DEFAULT_TIME_TO_LIVE);

[image: PubSub+]
	Java
	Python
	Go
	Spring
	JS
	REST
	MQTT
	JMS 2.0
	JMS 1.1

Copy CodeMessagingService messagingService = MessagingService.builder(ConfigurationProfile.V1)
 .fromProperties(properties).build().connect();
 Topic topic = Topic.of("solace/try/>");
 DirectMessageReceiver receiver = messagingService.createDirectMessageReceiverBuilder()
 .withSubscriptions(topic).build().start();
 receiver.receiveAsync(messageHandler);

Copy Codetopic = Topic.of("solace/try/>")
 messaging_service = MessagingService.builder().from_properties(broker_props).build().connect()
 direct_receiver = messaging_service.create_direct_message_receiver_builder().with_subscriptions(topic).build().start()
 direct_receiver.receive_async(MessageHandlerImpl())

Copy Codetopic := resource.TopicSubscriptionOf("solace/try/>")
 messagingService, err := messaging.NewMessagingServiceBuilder().FromConfigurationProvider(brokerConfig).Build()
 directReceiver, err := messagingService.CreateDirectMessageReceiverBuilder().WithSubscriptions(topic).Build()
 err := directReceiver.Start()
 regErr := directReceiver.ReceiveAsync(MessageHandler)

Copy Code// Consume using Spring Cloud Stream
 @Bean
 public Consumer helloWorldConsume(){
 return v -> System.out.println("Received: " + v);
 }

Copy Codesubscriber.session.connect();
 subscriber.session.subscribe(
 solace.SolclientFactory.createTopicDestination("solace/try/>"),
 true, correlationObject, 10000
);

Copy Codehttp.createServer(function (req, res) {
 console.log('Received message: ' + req.url);
 res.writeHead(200);
 res.end();
 }).listen([PORT], '[HOST]');
 console.log('Server running at http://[HOST]:[PORT]/');

Copy CodemqttClient.connect(connOpts);
 mqttClient.setCallback(new PrintingMqttCallback());
 String topic = "solace/try/>";
 int qos = 0;
 mqttClient.subscribe(topic, qos);

Copy CodeJMSContext context = connectionFactory.createContext();
 Topic topic = context.createTopic("solace/try/>");
 JMSConsumer consumer = context.createConsumer(topic);
 String message = consumer.receiveBody(String.class);

Copy CodeSession session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
 Topic topic = session.createTopic("solace/try/>");
 MessageConsumer messageConsumer = session.createConsumer(topic);
 messageConsumer.setMessageListener(new MessageDumpListener());
 connection.start();

	What is PubSub+?
	PubSub+ Event Portal
	Messaging APIs
	Platform APIs
	Resources

	Try Now

What is PubSub+?
Solace PubSub+ Platform is a complete event streaming solution that enables the design, deployment, and operation of Event-Driven Architecture (EDA) across hybrid cloud, multi-cloud and IoT environments. The heart of the platform consists of PubSub+ Event Brokers , which connect to form Event Meshes that dynamically route events in real-time, and the Event Portal which is pioneering how organizations manage their EDA.
Solace.dev is the home base for developers using PubSub+ Platform. You'll find information about our Messaging APIs, Platform APIs and more in the sections below. Have questions? Let us know over in the Solace Community.

Solace Event Portal
Solace Event Portal is the leading solution for organizations looking to maximize the value of their Event-Driven Architecture by enhancing the ability to optimize event flows, improve collaboration between developers and architects, and more!

[image: Design and Visualize event-driven systems]Design & Visualize your EDA
Visualize event flows between application domains, applications, and payload schema to event relationships.

[image: Embrace Event API Products]Embrace Event APIs
Curate and share sets of related high-value business events with internal and external developers to enrich customer experiences.

[image: Catalog Your Event Data]Catalog Your Event Data
Document and track existing topics, schemas, event meshes, pub/sub interfaces for each application, owners and points of contact, and changes for each of the managed EDA entities.

[image: Operate your EDA]Operate your EDA
Create and track versions of EDA objects, promote them through environments and analyze dependencies to assess impact

Read the Documentation
Learn more about Event Portal
Integrate Event Portal w/ SDLC

Messaging APIs and Protocols
Solace PubSub+ Event Brokers have built-in support for a variety of proprietary and open standard protocols and APIs, so you can create and connect apps with whatever language, open protocols and APIs you choose, without worrying about translation.
Solace messaging APIs offer uniform client access to all Solace PubSub+ capabilities and qualities of service, and are available for C, .NET, iOS, Java, JavaScript, JMS, Python and Node.js. Solace also supports popular open protocols like AMQP, JMS, MQTT, REST and WebSocket, and open APIs such as Paho and Qpid.

[image: Diagram: APIs and Protocols]

Connect Using a Supported Client Library
Select a connection point and supported client library below to start messaging.View by:[image:]

 icon/arrow_down
 Created with Sketch.

Language
Protocol

		[image:]
[image:]

 icon/arrow_down
 Created with Sketch.

Connect with Java
Solace JCSMP, Solace Java, Solace JMS over SMF, Paho over MQTT, QPID JMS 1.1 over AMQP, QPID JMS 2.0 over AMQP

Library
Protocol

[image:]

	Solace Java API

SMF

Get Started

[image:]

	Solace JCSMP API

SMF

Get Started

[image:]

	Solace JavaRTO

SMF

Get Started

[image:]

	Solace JMS API

SMF

Get Started

[image:]

	Solace REST Messaging API

REST

Get Started

[image:]

	Eclipse Paho Java Client

MQTT

Get Started

[image:]
	QPID JMS 1.1

AMQP

Get Started

[image:]
	QPID JMS 2.0

AMQP

Get Started

		[image:]

[image:]

 icon/arrow_down
 Created with Sketch.

Connect with C and C++
Solace C API over SMF, Paho over MQTT

Library
Protocol

[image:]

	Solace C

SMF

Get Started

[image:]

	Solace REST Messaging API

REST

Get Started

[image:]

	Eclipse Paho C Client

MQTT

Get Started

[image:]

	Eclipse Paho C++ Client

MQTT

Get Started

		[image:]
[image:]

 icon/arrow_down
 Created with Sketch.

Connect with Python
Solace Python API over SMF, Paho over MQTT

Library
Protocol

[image:]

	Solace Python API

SMF

Get Started

[image:]

	Solace REST Messaging API

REST

Get Started

[image:]

	Eclipse Paho Python Client

MQTT

Get Started

		[image:]
[image:]

 icon/arrow_down
 Created with Sketch.

Connect with Go
Solace Go API over SMF

Library
Protocol

[image:]

	Solace Go API

SMF

Get Started

		[image:]
[image:]

 icon/arrow_down
 Created with Sketch.

Connect with JavaScript
Solace Javascript API over SMF, Paho over MQTT

Library
Protocol

[image:]

	Solace JavaScript API

SMF

Get Started

[image:]

	Solace REST Messaging API

REST

Get Started

[image:]

	Eclipse Paho JavaScript Client

MQTT

Get Started

		[image:]

[image:]

 icon/arrow_down
 Created with Sketch.

Connect with Node.js
Solace Node.js API over SMF, AMPQP10 Open Source over AMQP

Library
Protocol

[image:]

	Solace Node.js API

SMF

Get Started

[image:]

	Solace REST Messaging API

REST

Get Started

[image:]

	AMQP10 Open Source API

AMQP

Get Started

		[image:]
[image:]

 icon/arrow_down
 Created with Sketch.

Connect with .NET
Solace .NET API over SMF, Paho over MQTT

Library
Protocol

[image:]

	Solace .NET

SMF

Get Started

[image:]

	Solace REST Messaging API

REST

Get Started

[image:]

	Eclipse Paho .NET Client

MQTT

Get Started

		[image:]
[image:]

 icon/arrow_down
 Created with Sketch.

Connect with Spring
Spring Cloud Stream, Spring Boot

Projects
Protocol

[image:]

	Spring Cloud Stream

SMF

Get Started

[image:]

	Spring Boot Java API

SMF

Get Started

[image:]
	Spring Boot JMS API

SMF

Get Started

PubSub+ Platform APIs
The PubSub+ Platform APIs are RESTful APIs that enable an API first approach to designing, managing, developing, and operating your Event-Driven Architecture while using PubSub+.

PubSub+ Cloud REST APIs
Work programmatically with PubSub+ Cloud.

APIs
	Mission Control
	Event Portal - Designer
	Event Portal - Runtime
	Platform
	Billing

Get OpenAPI Specs[image: OpenAPI Logo]

Getting Started
	Recipes
	Authentication / API Token Creation
	Error Handling
	Versioning
	Pagination
	Filtering

SEMP (Solace Element Management Protocol)
Configure, Monitor, or take Action on the PubSub+ Event Brokers.

APIs
	Config
	Action
	Monitor

Get OpenAPI Specs[image: OpenAPI Logo]

Getting Started
	Basic Operations with curl
	Architecture
	Error Handling
	Legacy SEMP

Resources
API Tutorials
Get up-to-speed in sending and receiving messages over open APIs and protocols, Solace Messaging APIs, and Pivotal Platform.

GitHub Samples
Check out our Solace samples for Spring, JMS, MQTT, AMQP, JavaScript, and more.

Connector Hub
Get a jump start plugging PubSub+ into AWS, Kafka, Spark, IBM WebSphere, and much more.

Training & Certifications
Get up to speed on our managed messaging service.

SDKPerf
SDKPerf is a command line tool for validating performance, checking configuration, and exploring features associated with your PubSub+ message broker.

Developer Community
Technical community for PubSub+.

Codelabs & Workshops
Get guided, hands on coding experience with PubSub+ Codelabs.

Back to top

	Products	PubSub+ Event Broker: Software
	PubSub+ Event Broker: Appliance
	PubSub+ Event Broker: Cloud

	Company	Careers
	Leadership
	Customers
	Partners
	Events
	Legal

	Developers	Docs
	Blog
	Community
	Support
	Contact
	Log In

[image: Solace Logo]

	GitHub
	LinkedIn
	Twitter
	Youtube

© 2024 Solace

	Legal

